Morphology Generation for Statistical Machine Translation
نویسندگان
چکیده
When translating into morphologically rich languages, Statistical MT approaches face the problem of data sparsity. The severity of the sparseness problem will be high when the corpus size of morphologically richer language is less. Even though we can use factored models to correctly generate morphological forms of words, the problem of data sparseness limits their performance. In this paper, we describe a simple and effective solution which is based on enriching the input corpora with various morphological forms of words. We use this method with the phrase-based and factor-based experiments on two morphologically rich languages: Hindi and Marathi when translating from English. We evaluate the performance of our experiments both in terms automatic evaluation and subjective evaluation such as adequacy and fluency. We observe that the morphology injection method helps in improving the quality of translation. We further analyze that the morph injection method helps in handling the data sparseness problem to a great level.
منابع مشابه
A new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملRich Morphology Generation Using Statistical Machine Translation
We present an approach for generation of morphologically rich languages using statistical machine translation. Given a sequence of lemmas and any subset of morphological features, we produce the inflected word forms. Testing on Arabic, a morphologically rich language, our models can reach 92.1% accuracy starting only with lemmas, and 98.9% accuracy if all the gold features are provided.
متن کاملMorphology Generation for Statistical Machine Translation using Deep Learning Techniques
Morphology in unbalanced languages remains a big challenge in the context of machine translation. In this paper, we propose to de-couple machine translation from morphology generation in order to better deal with the problem. We investigate the morphology simplification with a reasonable trade-off between expected gain and generation complexity. For the Chinese-Spanish task, optimum morphologic...
متن کاملThe AFRL-MITLL WMT16 News-Translation Task Systems
This paper describes the AFRL-MITLL statistical machine translation systems and the improvements that were developed during the WMT16 evaluation campaign. As part of these efforts we have adapted a variety new techniques to our previous years’ systems including Neural Machine Translation, additional out-of-vocabulary transliteration techniques, and morphology generation.
متن کاملThe TALP-UPC Phrase-Based Translation Systems for WMT13: System Combination with Morphology Generation, Domain Adaptation and Corpus Filtering
This paper describes the TALP participation in the WMT13 evaluation campaign. Our participation is based on the combination of several statistical machine translation systems: based on standard phrasebased Moses systems. Variations include techniques such as morphology generation, training sentence filtering, and domain adaptation through unit derivation. The results show a coherent improvement...
متن کاملTranslate, Predict or Generate: Modeling Rich Morphology in Statistical Machine Translation
We compare three methods of modeling morphological features in statistical machine translation (SMT) from English to Arabic, a morphologically rich language. Features can be modeled as part of the core translation process mapping source tokens to target tokens. Alternatively these features can be generated using target monolingual context as part of a separate generation (or post-translation in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.02093 شماره
صفحات -
تاریخ انتشار 2010